Quantitative Microscopy in Murine Models of Lung Inflammation

Joseph Soltzberg, Sarah Frischmann, Christiaan van Heeckeren, Nicole Brown, Arnold Caplan, Ph.D., and Tracey L. Bonfield, Ph.D., D.(ABMLI)

OBJECTIVE: To develop a quantitative means to measure lung inflammation using the murine models of chronic asthma and cystic fibrosis (CF).

STUDY DESIGN: Translational-based medicine often utilizes animal models to study new and innovative therapeutics. In asthma and CF, the animal models focus on airway inflammation and remodeling. The asthma model is based on hypersensitivity-induced airway disease, whereas the CF model focuses on the inflammatory response to infection with Pseudomonas aeruginosa. Qualitative measures of inflammation and lung pathophysiology introduce significant variability and difficulty in interpreting interventional outcomes. The highly sensitive and reproducible quantitative computational program interfaced with Image Pro Microscopy to monitor changes in lung inflammation and lung pathophysiology. The software interfaces with image microscopy and automates the lung section review process.

RESULTS: Results from this program recapitulated data obtained by manual point counting of inflammation, bronchoalveolar lavage differential, and histology. The data show a low coefficient of variation and high reproducibility between slides and sections.

CONCLUSION: Utilization of this new microscopy program will enhance the quantitative means of establishing changes in lung structure and inflammation as a measure of therapeutic intervention with the ability of refining interpretation of in vivo models potentially short-circuiting translation into the clinical setting. (Anal Quant Cytol Histol 2011;33:245–252)

Keywords: inflammation, lung disease, microscopic quantification, therapeutic response.

Lung disease has a major debilitating impact on society. Whether the decrease in pulmonary function is due to chronic reactive airway disease as in asthma, fibrosis as in interstitial pulmonary fibrosis, or...
inflammation or infection as in cystic fibrosis (CF), all processes result in a decreased quality of life and life expectancy. Research continues to focus on discovering new therapies and mechanisms of pathophysiology. The development of unique and innovate approaches to mechanisms and pharmacological interventions starts at the bench and transitions into animal models, then finally into patients if the data support efficacy with minimal deleterious effects. Parameters of in vitro, in vivo, and clinical trials involve assessment of lung structure and inflammation. Traditional measures are visual evaluation of bronchoalveolar lavage (BAL) cells and differential or lung histology from tissue sections. Qualitative numerical values are given by technician scoring and visual point counting. These methods have significant intersample and intra-sample coefficients of variation (CV) as well as the potential of introducing significant subjective interpretation. The impact of these elevated CVs on determining model validity and therapeutic impact cannot be underestimated. New methods for quantitative assessment of inflammation are essential for improving model efficacy and validation of new therapeutics.

Several companies have generated programs that allow for the development of computer-generated macros for quantitative assessment of inflammation. One popular piece of software is Image Pro 7.0 Plus. Image Pro software, combined with the correct hardware, allows one to view images from a microscope on a monitor as a live video stream. Other capabilities of the software include, but are not limited to, the ability to take pictures of images, the ability to make on-screen measurements, and the ability to perform various data analysis functions. We utilized this software to write a macro program that autonomously operates the microscope to scan images and assign a value of inflammation based on inflammatory cell recruitment into the lung. To validate this program we used two standard murine models of lung disease to correlate traditional measures of inflammation with the macro-generated algorithm. The results of this study suggest that digital microscopy is an efficient, effective, and powerful research technique with vast potential to enhance our interpretation of airway inflammation in the context of either murine models of CF lung infection and inflammation or chronic asthma airway inflammation.

Materials and Methods
Animal Models
All procedures involving mice were reviewed and approved by Case Western Reserve University, Institutional Animal Care and Use Committee. Case Western Reserve University Animal Assurance, No. A3145-01, with Institutional Animal Care and Use Committee, No. 2009-0128.

Ovalbumin Murine Model of Chronic Asthma
Balb/c mice were purchased from Jackson Laboratories (Bar Harbor, Maine) and sensitized by intraperitoneal injections (100 μL) of 10 μg of ovalbumin emulsified in 1.5 mg of Al(OH)₃. On day 14, mice were exposed to 1% wt/vol ovalbumin in phosphate-buffered saline (PBS) by aerosolization every other day for 4 weeks. Sham sensitization and challenges were carried out with sterile Al(OH)₃ in PBS.

Murine Model of CF Infection and Inflammation
To generate a transient chronic infection, CFTR knockout (KO) mice (Cftrtm1Unc–TgN(FABPCFTR) #Jaw: gut corrected Cftr KO) were infected with 5 × 10³ to 9 × 10⁴ colony-forming units (CFU) P aeruginosa, strain M5715 (a clinical isolate), were embedded on agarose beads and suspended in 20 μL PBS. Cftr KO and controls were anesthetized and then inoculated with bacteria into the trachea with a plastic catheter angled toward the right
mainstream bronchus. Cultures were verified by bacteriology before inoculation, and BAL was cultured to determine level of infection at the study’s termination.

Murine Cell Source: Lung Inflammation

Mice were injected intraperitoneally with ketamine (80 mg/kg) and xylazine (10 mg/kg), as previously described.14 The thoracic cavity was opened and the lungs exposed followed by insertion of a cannula through the trachea into the bronchi and infusing $1 \times 1\text{ mL}$ aliquot of warm PBS containing 0.2% lidocaine to do the BAL. The BAL fluid sample was recovered by aspirating the liquid with a syringe and evaluated for total cell count, cellular differential.

Lung Histology

Lungs were perfused with paraformaldehyde, sectioned while controlling for proximal airways for comparison purposes.15 Differential cell counts were obtained from cytospins stained with H-E. Animals were assessed for inflammation by BAL, and a separate set of animals were evaluated for lung histology.

Hardware, Software, and Scripting

We used an Olympus BX50 microscope (Olympus America Inc., Center Valley, Pennsylvania, U.S.A.), which was connected to a Prior OptiScan II machine (Prior Scientific Inc., Rockland, Massachusetts, U.S.A.). The Prior OptiScan II machine motorized features of the microscope, such as the stage. The script for the software developed was written under the macro feature of the Image Pro 7.0 Plus software (Media Cybernetics, Inc., Bethesda, Maryland, U.S.A.). The Image Pro 7.0 Plus software enabled communication among the computer, the microscope, and the Prior OptiScan II machine. The macro was designed specifically to test for inflammation within a lung section by scanning a lung section for the number of inflammatory nuclei. Inflammatory nuclei were defined to the computer based on size (in microns) and on color (purple-based because of the H-E stain). H-E defines neutrophils, macrophages, lymphocytes, eosinophils, and other inflammatory nuclei. Although interstitial cellular nuclei are also stained, they are considered background. Overall, the value of nuclei in the control (not treated tissue sections) was not significantly different from that in the saline-treated inflammation control, so this manuscript focused on the treatment control group for ease of interpretation and presentation. All samples were evaluated as a comparison to the saline control. The essential function of the software was to measure and indicate inflammation levels in varying samples by realizing that noninflamed lung sections would have fewer inflammatory nuclei than inflamed lung sections. Baseline inflammatory nuclei were established on all study nontreated controls before initiation of studies.

Software Operation and Procedure

The software definition is based on the following: The process uses the Opti-Scann II machine of the Image-Pro MC software. Using the macro function, the Stage-Pro initiates. This is where the physical limits of the automated state are established. At this point the slide image is placed on the microscope stage and set for 60\times magnification. The program operates on two levels: collecting data and then analyzing data. The data collection process is initiated by setting scan parameters along a given slide. The program then divides the area encompassed by these parameters into 196 subsections and autonomously takes pictures of these 196 subsections. The program then analyzes each of these 196 images individually. The program scans each image for inflammatory nuclei. The parameters for what defines inflammatory nuclei are pixel shade and object size. Currently, the program scans for objects that are the approximate size range of white blood cells (WBCs) and are a shade of purple (because of the H-E stain). Using the pixel definition of choice, the color most associated with the recruitment of inflammatory cells, neutrophils, lymphocytes, macrophages, eosinophils are counted based on recognition. The microscope then takes 144 pictures covering 195 areas of the several (three sections) on the given slide. After the pictures have been minimized, the microscope will scan through each image to assess the amount of inflammation as a comparison to the control. The nuclei counted for each section exported to Excel (Microsoft, Redmond, Washington, U.S.A.) for evaluation. The macro operated based on the following scripted (C++) procedure.

1. **Stage Alignment.** The first process is aligning and formatting the mechanical microscope stage. This step serves to ensure functionality of the mechanical stage, as well as to return the stage to the origin position.

2. **Scan Area Parameters.** The next step is to set the desired scan parameters. The user defines the pa-
parameters by defining the top-left and bottom-right corners of the desired scan area. This step serves to establish the section of the slide to be examined.

3. **Automated Image Capture.** Once the scan parameters have been defined, the macro divides the desired area into 196 sections and the microscope takes a picture of each of the 196 sections. The ensuing microscope movement and image-capture process are controlled entirely by the computer.

4. **Image Analysis.** The macro scans each of the 196 images for objects that match the definition of inflammatory nuclei and export the data into the default data analysis program, Excel 2007.

Data Analysis

The “average-if” function calculated the mean number of inflammatory nuclei per image, thus giving an overall inflammatory nuclei count for the entire lung section. The “average-if” function excluded any inflammatory nuclei count fewer than five inflammatory nuclei in calculating the mean. This served to eliminate any blank images (images with no lung tissue on them) as well as any images with debris on them from the final mean. This number was then used to compare levels of inflammations. Data analysis was validated using Prism 3.0 (San Jose, California, U.S.A.); with 95% CI with p < 0.05.

Results

Murine Model of Chronic Asthma and the ImagePro Macro

To validate our software, we used two different murine models of airway disease. The ovalbumin murine model of chronic asthma was used to measure changes in airway cell recruitment. In this model, Balb/c mice were sensitized with ovalbumin, rested for 2 weeks, and followed by every-other-day challenges for 4 weeks. The control group consists of ovalbumin-sensitized animals challenged with saline (Figure 1A). At 4 weeks the lung histology showed extensive inflammatory infiltrate (Figure 1B), compared to the saline challenge control. This was consistent with the total cell recruitment in the BAL fluid (Figure 1C). The software examined 30 lung sections that were treated with saline and 30 lung sections that were treated with ovalbumin. The 30 lung sections that were treated with saline were not expected to show signs of significant inflammation because saline has been proven to not precipitate a large inflammatory reaction. The 30 lung sections that were treated with ovalbumin were expected to show signs of significant inflammation because ovalbumin has been proven to precipitate a large inflammatory reaction. The mean number of inflammatory nuclei for the

Figure 1 Visual Representation of Automated-Imaging Software. A representative control (A) and chronic asthma (B), show a significant increase in inflammation induced by ovalbumin challenge. The histology shows enhanced inflammatory cell recruitment and extracellular matrix deposition (arrows of designation). The software then analyzed each image and determined the number of inflammatory nuclei. The scatter plot shows the relative number of inflammatory nuclei for sections from saline challenge (C, n = 10 slides) and the ovalbumin challenge samples positive control (n = 10 slides). The ImagePro program defined the inflammatory difference to be significant at p < 0.002.
ovalbumin-treated lung sections was 98, and the mean number of inflammatory nuclei for the saline-treated lung sections was only 69. This indicates the viability of the software in direct applications, specifically the chronic asthma lung model. The histologic evaluation of the model was consistent with observations obtained by quantification of the inflammatory nuclei 97.8 ± 5.3, which was 30 ± 7% more than the inflammatory nuclei obtained with the controls sections (Figure 1C, 69.8 ± 3.4 inflammatory nuclei, p < 0.002).

Murine Model of Lung Infection and Inflammation in CF

For the second model of inflammation we used murine the P aeruginosa lung infection in Cftr KO.3,13 In order to sustain the infection, P aeruginosa was impregnated onto agar beads and intratracheally administered to mice. Once infected, the animals were followed for up to 10 days after infection before euthanasia for lung histology or BAL. Cftr-deficient mice without infection have healthy lung histology (Figure 2A). However, post-infection the lungs become infiltrated with neutrophils and lymphocytes (Figure 2B). The software examined 17 sets of lungs from mice treated with sterile beads and 18 sets of lungs from mice treated with P aeruginosa agarose beads. The 17 lungs treated with sterile beads were not expected to show any inflammation, and the lungs treated with P aeruginosa agarose beads were expected to have excessive numbers of WBCs. The software validated this hypothesis. Over several sections, the Cftr KO lungs consistently had greater numbers of inflammatory nuclei (Figure 2C, 60 ± 20, n = 35, p < 0.001) over the non-treated control (32 ± 4, n = 35). Of interest, the controls in the Cftr KO infection study (C57BL/6) background consistently had less inflammatory infiltrate than the saline challenged Balb/c mice in the asthma studies, emphasizing the requirement for species specific controls in evaluating inflammation. The models were then used to test the precision, accuracy, and reproducibility of the microscope-quantified inflammation.

Histologic Precision Testing in the Murine Models of Chronic Asthma and CF

The overall level of precision for the software was determined by examining eight sets of three different lung sections from different depths within a given lung using the process demonstrated in Figure 3. This was done for both the chronic asthma...
and Cftr KO lung infection/inflammation models. Each lung section was examined by the software and diagnosed with a number of inflammatory nuclei. The number of inflammatory nuclei for each of the three lung sections from a given lung was then analyzed by calculating the CV for those values. The level of precision was then calculated from the CV. The mean CV for the chronic asthma lung model (Figure 4A), and the Cftr KO lung model (Figure 4B) was 3.33% and 1.65%, respectively. The level of precision for the chronic asthma lung model (Figure 4A) and the Cftr KO lung model (Figure 4B) was 96.7% and 98.3%, respectively.

Figure 3 Inflammatory nuclei diagnosis (software)—chronic asthma/Cftr KO lung model: precision test. The software then analyzed each image and determined the number of inflammatory nuclei; this number is shown in the bottom left corner of each image. The green numbers represent nuclei that are of the right color; the purple highlights represent nuclei that are of the right size. Inflammatory nuclei are counted only if they are of the right color and size.

Histologic Accuracy Testing in the Murine Models of Chronic Asthma and CF

Accuracy was measured by comparing manual point counting and the BAL WBC infiltrate relative to the image obtained using our macro. The accuracy of the software, relative to the point counting and BAL infiltrate was compared using correlation measurements. This was done by comparing 35 sets of independent slides using manual point counting and automated software. The coefficient of correlation (the r value) for the data was 0.94, p < 0.0001. The proximity of this value to 1.0 indicates that there is a very strong positive correlation, thus establishing the accuracy of the software relative to manual point counting. This is demonstrated in Figure 5. The accuracy of the software compared to traditional measures of inflammation (number of WBCs per milliliter of BALF) was also evaluated. This was done by comparing the mean number of

Figure 4 Data analysis of the chronic asthma and Cftr KO murine model inflammation. The following data were obtained from eight different slides, each containing three lung sections from the same mouse at varying depths. The software assigned each lung section with a number of inflammatory nuclei. These numbers were plotted based on the slide/mouse from which they came. The CV (the standard deviation divided by the mean) was calculated for each mouse based on the number of inflammatory nuclei that each of the three lung sections possessed. This value is represented next to each symbol denoting a set of lung sections as the CV value. From this the level of precision (in %) was determined by multiplying the CV value by 100 and then subtracting that number from 100. Next to the graph is the mean CV and the mean precision for the eight slides shown. This test was applied to the murine ovalbumin chronic asthma lung model in A and to the Cftr KO P aeruginosa infection model in B. The mean CV was 3.33% and the mean precision was 96.7% for the chronic asthma lung model. The mean CV was 1.65% and the mean precision was 98.3% for the Cftr KO P aeruginosa infection model.
WBCs/mL for six groups of mice to the mean number of inflammatory nuclei for those same six groups of mice. The coefficient of correlation (the r value) for the data was 0.926, p = 0.007 (Figure 6).

Discussion

In vivo models of lung inflammation and infection are essential in the development of new directions for molecular approaches to understanding pathophysiology. Inherent in the establishment of in vivo models is to understand and quantify the inflammation within histologic sections. In these models, often an objective reviewer is used to define inflammation by “point-counting” or generalized nuclei assessment. Although manual evaluation is also key to visual interpretation, applying additional nonsubjective models is also essential. This becomes especially true when new therapeutics are introduced and measurements are key in the definition of efficacy and impact on the disease pathology. We have developed a sensitive, quantitative, and reproducible microscope-directed computer macro, which systematically counts inflammatory nuclei over several areas of lung sections stained with H-E. This new computer macro with the imaging system will enhance in vivo model accuracy and response to therapeutics.

Digital microscopy is a unique technology in that it is actually a combination of two very different technologies. Digital microscopy takes the power of the computer and combines it with the power of the microscope to form a dual technology that functions on not one, but two unique paradigms. The microscope allows one to examine specimens in high detail at very small scales, and the computer allows one to automate processes and quantify/analyze data. The many faults associated with the microscope, such as experimenter bias, are solved when combined with the computer. Our study has
shown that digital microscopy has the ability to produce highly precise and accurate quantifiable data. The software that we have created has the unique ability to assess levels of inflammation. In addition, the software we have created is precise to 96.7% and has demonstrated high levels of correlation to human and experimental data.

In this study, we developed the unique ability to assess inflammation, but that is only one of the many possible abilities of the macro. The program can be easily tweaked so that it would be able to quantify the presence of any cell desired. This can be done simply by redefining the attributes of the cells for which the software is to scans. Thus, the macro can serve not only as a tool to assess inflammation, but as a tool to validate animal models. We can test for this by measuring if one animal has the same average number of inflammatory nuclei as another regardless of whether there is involvement of anti-inflammatory drug testing. By applying the software to a control group, an infected group treated with an anti-inflammatory drug, one can assess levels of inflammation in each group. The number of inflammatory nuclei present in each group can be used to determine and quantify the success of an anti-inflammatory drug. The program can also be applied to other species simply by editing the program to scan for cells of different sizes and colors. Further, increased precision and accuracy can be instituted, although these parameters cost time and hardware storage.

Acknowledgments

We would also like to thank Hawken School and the STEMM (Science, Technology, Engineering, Math and Medicine) program.

References

13. van Heeckeren AM, Schluchter MD, Sue W, Davis PB: Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. Am J Respir Crit Care Med 2006;173:288–296